Prove that the points (a, b + c), (b, c + a) and (c, a + b) are collinear.
Concept:
Application:
Let Δ be the area of the triangle formed by the points (a, b+c), (b, c+a) and (c, a+b).
We have,
∴Δ=12|a(c+a)+b(a+b)+c(b+c)−b(b+c)+c(c+a)+a(a+b)|
⇒Δ=12|(ac+a2+ab+b2+bc+c2)−(b2+bc+c2+ca+a2+ab)|
⇒Δ=0
Hence, the given points are collinear.