Consider the given point
A(2a,4a),B(2a,6a)andC(2a+√3a,5a)
Distance between AB,BCandCA respectively.
AB=√(2a−2a)2+(4a−6a)2
=√0+(−2a)2
=√4a2=2a
BC=√(2a−(2a+√3a))2+(6a−5a)2
=√3a2+a2
=√4a2=2a
CA=√(2a+√3a−2a)2+(5a−4a)2
=√3a2+a2
=√4a2=2a
Hence, AB=BC=CA
It is an equilateral triangle.