wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that the product of the lengths of the perpendicular drawn from the points A(a2b2, 0) and B(a2b2, 0) to the line xacosθ+ybsinθ=1 is b2.

Open in App
Solution

Given line
xacosθ+ybsinθ=1
Let p1 is the perpendicular distance of given line from point (a2b2,0)
Hence by formula p=ax1+by1+ca2+b2

p1=∣ ∣ ∣ ∣ ∣ ∣cosθa2b2a1cos2θa2+sin2θb2∣ ∣ ∣ ∣ ∣ ∣

p1=∣ ∣ ∣ ∣ ∣cosθa2b2ab2cos2θ+a2sin2θb∣ ∣ ∣ ∣ ∣

Let p2 is the perpendicular distance of given line from point (a2b2,0)
Hence by formula p=ax1+by1+ca2+b2

p2=∣ ∣ ∣ ∣ ∣ ∣cosθa2b2a1cos2θa2+sin2θb2∣ ∣ ∣ ∣ ∣ ∣

p2=cosθa2b2+ab2cos2θ+a2sin2θb

Product of length p1p2

p1p2=⎜ ⎜ ⎜ ⎜cosθa2b2ab2cos2θ+a2sin2θb⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜cosθa2b2+ab2cos2θ+a2sin2θb⎟ ⎟ ⎟ ⎟

p1p2=∣ ∣(b2(cosθ2(a2b2)a2)b2cos2θ+a2sin2θ)∣ ∣

Since sin2θ=1cos2θ

p1p2=∣ ∣(b2(cosθ2(a2b2)a2)b2cos2θ+a2a2cos2θ)∣ ∣

p1p2=(b2(cosθ2(a2b2)a2)cos2θ(a2b2)a2)

p1p2=b2

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Tango With Straight Lines !!
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon