Prove that the product of the lengths of the perpendiculars drawn from the points (√(a2−b2,0) and (−√(a2−b2,0) to the line
xacos θ+ybsin θ=1 is b2
Let P1 and p2 be the length of perpendiculars from (√(a2−b2,0) and (−√(a2−b2,0) to the line
xacos θ+ybsin θ=1.
∴ p1∣∣ ∣ ∣∣√a2−b2cosθa+0×sin θb−1√(cos θa)2+(sin θb)2∣∣ ∣ ∣∣
=∣∣ ∣ ∣∣√a2−b2cos θa−1√cos2θa2+sin2 θb2∣∣ ∣ ∣∣
P2=∣∣ ∣ ∣∣−√a2−b2cosθa+0×sin θb−1√(cos θa)2+(sin θb)2∣∣ ∣ ∣∣
=∣∣ ∣ ∣∣−√a2−b2cos θa−1√cos2θa2+sin2 θb2∣∣ ∣ ∣∣
Now P1P2
=∣∣ ∣ ∣∣√a2−b2cosθa−1√cos2θa+sin2θb2∣∣ ∣ ∣∣∣∣ ∣ ∣∣−√a2−b2cosθa−1√cos2θa2+sin2θb2∣∣ ∣ ∣∣
=∣∣∣[√a2−b2cosθa−1][√a2−b2cosθa+1]∣∣∣cos2θa2++sin2θb2+
=∣∣∣[(a2−b2)cos2θ−1a2−1]∣∣∣cos2θa2+1−cos2θb2
=∣∣∣[(a2−b2)cos2θa2−1]∣∣∣b2cos2θ+a2−a2cos2θa2b2
=∣∣a2−(a2−b2)cos2θ∣∣a2−(a2−b2)cos2θb2
=a2−(a2−b2)cos2θ×b2a2−(a2−b2)cos2θ
=b2