wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that the product of the lengths of the perpendiculars drawn from the points ((a2b2,0) and ((a2b2,0) to the line
xacos θ+ybsin θ=1 is b2

Open in App
Solution

Let P1 and p2 be the length of perpendiculars from ((a2b2,0) and ((a2b2,0) to the line
xacos θ+ybsin θ=1.

p1∣ ∣ ∣a2b2cosθa+0×sin θb1(cos θa)2+(sin θb)2∣ ∣ ∣

=∣ ∣ ∣a2b2cos θa1cos2θa2+sin2 θb2∣ ∣ ∣

P2=∣ ∣ ∣a2b2cosθa+0×sin θb1(cos θa)2+(sin θb)2∣ ∣ ∣

=∣ ∣ ∣a2b2cos θa1cos2θa2+sin2 θb2∣ ∣ ∣

Now P1P2

=∣ ∣ ∣a2b2cosθa1cos2θa+sin2θb2∣ ∣ ∣∣ ∣ ∣a2b2cosθa1cos2θa2+sin2θb2∣ ∣ ∣

=[a2b2cosθa1][a2b2cosθa+1]cos2θa2++sin2θb2+

=[(a2b2)cos2θ1a21]cos2θa2+1cos2θb2

=[(a2b2)cos2θa21]b2cos2θ+a2a2cos2θa2b2

=a2(a2b2)cos2θa2(a2b2)cos2θb2

=a2(a2b2)cos2θ×b2a2(a2b2)cos2θ

=b2


flag
Suggest Corrections
thumbs-up
50
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Line and a Point
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon