Equation of the given line is
x(bcosθ)+y(asinθ)−ab=0
∴p1=√(a2−b2)(bcosθ)−ab√(b2cos2θ+a2sin2θ)
∴p1=−√(a2−b2)(bcosθ)−ab√(b2cos2θ+a2sin2θ)
∴p1p2=−(a2−b2)b2cos2θ−a2b2b2cos2θ+a2sin2θ
∵(L+M)(L−M)=L2−M2
=b2[a2−a2cos2θ+b2cos2θ]b2cos2θ+a2sin2θ
=b2[a2sin2θ+b2cos2θ]b2cos2θ+a2sin2θ=b2