Let m1 and m2 be the slopes of the lines representyed by
ax2+2hxy+by2=0
∴m1+m2=−2hb and m1m2=ab...(1)
The separate equation of the lines represented by ax2+2hxy+by2=0 are
y=m1x and y=m2x
i.e. m1x−y=0 and m2x−y=0
length of perpendicular from P(x1,y1) on
m1x−y=0 is ∣∣
∣
∣∣m1x1−y1√m21+1∣∣
∣
∣∣
Length of perpendicular from P(x1,y1) on
m2x−y=0 is ∣∣
∣
∣∣m2x1−y1√m22+1∣∣
∣
∣∣
∴ product of lengths of perpendiculars
∣∣
∣
∣∣m1x1−y1√m21+1∣∣
∣
∣∣×∣∣
∣
∣∣m2x1−y1√m22+1∣∣
∣
∣∣
=∣∣
∣
∣∣m1m2x21−(m1+m2)x1y1+y21√m21m22+m21+m22+1∣∣
∣
∣∣
m1m2x21−(m1+m2)x1y1+y21√m21m22+(m1+m2)2−2m1m2+1
=∣∣
∣
∣
∣∣ab.x21−−2hbx1y1+y21√a2b2+4h2b2−2ab+1∣∣
∣
∣
∣∣...(By(1))
=∣∣
∣∣ax21+2hx1y1+by21√a2+4h2−2ab+b2∣∣
∣∣
=∣∣
∣∣ax21+2hx1y1+by21√(a2−2ab+b2)+4h2∣∣
∣∣
=∣∣
∣∣ax21+2hx1y1+by21√(a2−b2)2+4h2∣∣
∣∣