Given:△ABC∼△PQR
To prove :ar(ABC)ar(PQR)=(ABPQ)2=(BCQR)2=(ACPR)2
Proof:-
arABC=12×base×height=12×BC×AM−−−(i)
ar(PQR)=12×base×hight=12×QP×PN−−−−(ii)
ar(ABC)ar(PQR)=BC×AMQR×PN−−−−(A)
In △ABM and △PQN,<B=<Q,<M=<N
△ABM∼△PQN
∴ABPQ=AMPN−−−(B)
From (A)
ar(ABC)ar(PQR)=BC×AMQR×PN=BCQR×ABPQ−−−(C)
Now, given △ABC∼△PQR⇒ABPQ=BCQP=ACPR
Putting in (C)ar(ABC)ar(PQR)=(ABPQ)2
Similarly
⇒ar(ABC)ar(PQR)=(ABPQ)2(BCQR)2=(ACPR)2
Hence proved