Let the given equation be of the form Ax2+Bx+C=0.
Then, A=a−b+c,B=2(a−b) and C=a−b−c.
Now, the discriminant of Ax2+Bx+C=0 is
B2−4AC=[2(a−b)]2−4(a−b+c)(a−b−c)
=4(a−b)2−4[(a−b)+c][(a−b)−c]
=4(a−b)2−4[(a−b)2−c2]
Δ=4(a−b)2−4(a−b)2+4c2=4c2, a perfect square.
Therefore, Δ>0 and it is a perfect square.
Hence, the roots of the given equation are rational numbers.