R.E.F image
A & B ⇒ midpoint of
diagonals
Let PQRS be a trapezium for ¯¯¯¯¯¯¯¯PQ∥¯¯¯¯¯¯¯¯SR
To prove : ¯¯¯¯¯¯¯¯PQ∥¯¯¯¯¯¯¯¯AB or ¯¯¯¯¯¯¯¯SR∥¯¯¯¯¯¯¯¯AB and AB=SR−PQ2
Now ¯¯¯¯¯¯¯¯PQ∥¯¯¯¯¯¯¯¯SR and
¯¯¯¯¯¯¯¯SQ and ¯¯¯¯¯¯¯¯PR arc diagnales,
∠QSR=∠PQS=a ∵ alternate angles
∠QPR=∠PRS=b ∵ alternate angles
also, SA=AQ
& RB=BP
∠PQB=∠BXR
∠QPB=∠BRX }ASA congruent rule
△QBP=△XBR
⇒BQ=BX&PQ=XR
Again in △ QSX,
A & B are mid point of
QS&XB
So, ¯¯¯¯¯¯¯¯AB∥¯¯¯¯¯¯¯¯SX
So, ¯¯¯¯¯¯¯¯AB∥¯¯¯¯¯¯¯¯¯OQ
Hence Proved -
Also, AB=SX2=SR−XR2=SR−PQ2