wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that the sum of the squares of the perpendiculars on any tangent from two points on the minor axis, each distant a2b2 from the centre, is 2a2.

Open in App
Solution

The equation of tangent to ellipse is bxcosθ+aysinθ=ab
The two points on minor axis is (0,a2b2) and (0,a2b2)
The length of perpendicular from those two points on tangent are
a(a2b2sinθb)b2cos2θ+a2sin2θ & a(a2b2sinθb)b2cos2θ+a2sin2θ
By using Ax+By+CA2+B2
So, sum of square of perpendiculars is =(a(a2b2sinθb)b2cos2θ+a2sin2θ)2+(a(a2b2sinθb)b2cos2θ+a2sin2θ)2
=a2(a2b2sinθb)2b2cos2θ+a2sin2θ+a2(a2b2sinθb)2b2cos2θ+a2sin2θ
=a2((a2b2)sin2θ+b22(a2b2)sinθ.b+(a2b2)sin2θ+b2+2a2b2sinθ)b2cos2θ+a2sin2θ
=a2(2(a2b2)sin2θ+2b2)b2cos2θ+a2sin2θ
=2a2(a2sin2θb2sin2θ+2b2)b2cos2θ+a2sin2θ
=2a2(a2sin2θ+b2(1sin2θ))b2cos2θ+a2sin2θ
=2a2(a2sin2θ+b2cos2θ)b2cos2θ+a2sin2θ=2a2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon