The equation of tangent to ellipse is
bxcosθ+aysinθ=abThe two points on minor axis is (0,√a2−b2) and (0,−√a2−b2)
The length of perpendicular from those two points on tangent are
a(√a2−b2sinθ−b)√b2cos2θ+a2sin2θ & a(−√a2−b2sinθ−b)√b2cos2θ+a2sin2θ
By using ∣∣∣Ax+By+C√A2+B2∣∣∣
So, sum of square of perpendiculars is =(a(√a2−b2sinθ−b)√b2cos2θ+a2sin2θ)2+(a(−√a2−b2sinθ−b)√b2cos2θ+a2sin2θ)2
=a2(√a2−b2sinθ−b)2b2cos2θ+a2sin2θ+a2(−√a2−b2sinθ−b)2b2cos2θ+a2sin2θ
=a2((a2−b2)sin2θ+b2−2√(a2−b2)sinθ.b+(a2−b2)sin2θ+b2+2√a2−b2sinθ)b2cos2θ+a2sin2θ
=a2(2(a2−b2)sin2θ+2b2)b2cos2θ+a2sin2θ
=2a2(a2sin2θ−b2sin2θ+2b2)b2cos2θ+a2sin2θ
=2a2(a2sin2θ+b2(1−sin2θ))b2cos2θ+a2sin2θ
=2a2(a2sin2θ+b2cos2θ)b2cos2θ+a2sin2θ=2a2