Given:
ABCD is a rhombus.
Hence, AB=BC=CD=AD
And, AC perpendicular to BD
DO=12DB and AO=12AC
To Prove:
AB2+BC2+CD2+AD2=AC2+BD2
Proof:
In △AOD, By Pythagoras Theorem,
AD2=AO2+OD2.....(1)
Similarly,
DC2=DO2+OC2.....(2)
BC2=OB2+OC2.....(3)
AB2=AO2+OB2.....(4)
Adding 1, 2, 3, 4 we get,
AB2+BC2+CD2+AD2=2AO2+2BO2+2CO2+2DO2....(5)
Since, DO=OB=12DB and AO=OC=12AC....(6)
From 5 and 6,
AB2+BC2+CD2+AD2=AC22+BD22+AC22+BD22
∴ AB2+BC2+CD2+AD2=AC2+BD2