Prove that the triangle, whose position vectors of the vertices are 2^i+4^j−^k,4^i+5^j+^k and 3^i+6^j−3^k respectively, is an isosceles right angled triangle.
Open in App
Solution
Position vector of vertices are A,B,C →OA=2^i+4^j−^k →OB=4^i+5^j+^k →OC=3^i+6^j−3^k ∴→AB= Position vector of B− Position vector of A →AB=(4^i+5^j+^k)−(2^i+4^j−^k)=2^i+^j+2^k ∣∣→AB∣∣=AB=√22+12+22=3....(1) ∴→BC= Position vector of C− Position vector of B →BC=(3^i+6^j−3^k)−(4^i+5^j+^k)=−^i+^j−4^k ∣∣→BC∣∣=BC=√(−1)2+(1)2+(−4)2=√18=3 ∴→CA= Position vector of A− Position vector of C →CA=(2^i+4^j−^k)−(3^i+6^j−3^k)=−^i−2^j+2^k ∣∣→CA∣∣=CA=√(−1)2+(−2)2+(2)2=3 ∵ In triangle ABC,AB=BC ∴ This is isosceles triangle and (3√2)2=32+32 BC2=AB2+AC2 In triangle ABC, angle BAC=90o