wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that the triangle, whose position vectors of the vertices are 2^i+4^j^k,4^i+5^j+^k and 3^i+6^j3^k respectively, is an isosceles right angled triangle.

Open in App
Solution

Position vector of vertices are A,B,C
OA=2^i+4^j^k
OB=4^i+5^j+^k
OC=3^i+6^j3^k
AB= Position vector of B Position vector of A
AB=(4^i+5^j+^k)(2^i+4^j^k)=2^i+^j+2^k
AB=AB=22+12+22=3....(1)
BC= Position vector of C Position vector of B
BC=(3^i+6^j3^k)(4^i+5^j+^k)=^i+^j4^k
BC=BC=(1)2+(1)2+(4)2=18=3
CA= Position vector of A Position vector of C
CA=(2^i+4^j^k)(3^i+6^j3^k)=^i2^j+2^k
CA=CA=(1)2+(2)2+(2)2=3
In triangle ABC,AB=BC
This is isosceles triangle
and (32)2=32+32
BC2=AB2+AC2
In triangle ABC, angle BAC=90o
665786_628901_ans_345ca59b72b24341a098262677dcfbf8.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon