wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that the two conics l1r=1ecosθ and l2r=1ecos(θa) will touch one another, if l21(1e22)+l22(1e21)+2l1l2e1e2cosα=2l1l2.

Open in App
Solution

If β be the vectorial angle of the common point of contact (say P), then tangent at this point with respect to 1 will be
l1r=cos(θβ)e1cosθ
or l1r=cosθ(cosβe1)+sinθsinβ.....3
Again the tangent at P w.r.t. 2 will be
l2r=cos(θβ)e2cos(θα)
or l2r=cosθ(cosβe2cosα)+sinθ(sinβe2sinα)....4
If 3 and 4 represent the same straight line, comparing the two we have
cosβe1cosβe2cosα=sinβsinβe2sinα=l1l2
Hence cosβ=l1e2cosαl2e1l1l2
and sinβ=l1e2sinαl1l2
To eliminate β squaring and adding the two, we get the required condition as
(l1l2)2=(l1e2cosαl2e1)2+l21e22sin2α
or l21(1e22)+l22(1e21)=2l1l2(1e1e2cosα)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Componendo and Dividendo
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon