If β be the vectorial angle of the common point of contact (say P), then tangent at this point with respect to 1 will be
l1r=cos(θ−β)−e1cosθ
or l1r=cosθ(cosβ−e1)+sinθsinβ.....3
Again the tangent at P w.r.t. 2 will be
l2r=cos(θ−β)−e2cos(θ−α)
or l2r=cosθ(cosβ−e2cosα)+sinθ(sinβ−e2sinα)....4
If 3 and 4 represent the same straight line, comparing the two we have
cosβ−e1cosβ−e2cosα=sinβsinβ−e2sinα=l1l2
Hence cosβ=l1e2cosα−l2e1l1−l2
and sinβ=l1e2sinαl1−l2
To eliminate β squaring and adding the two, we get the required condition as
(l1−l2)2=(l1e2cosα−l2e1)2+l21e22sin2α
or l21(1−e22)+l22(1−e21)=2l1l2(1−e1e2cosα)