To prove :ar (||gm ABCD)=ar (||gm EBCF)
Proof : In ΔABE and ΔDCF
∠EAB=∠FDC[AB||DC, AF is the transversal⇒ Pair of corresponding angles are equal]...(1)
∠BEA=∠CFD.[BE||CF,AF is the transversal⇒ Pair of corresponding angles are equal]....(2)
Now, ∠EAB+∠ABE+∠BEA=∠FDC+∠DCF+∠CFD=180∘
[Sum of measures of the interior or angles of a triangle is 180∘
∴∠ABE=∠DCF...(3) [Using (1)and (2)]
Also, AB =DC [Opposite sides of a ||gm are equal]...(4)
Therefore, using (1),(3)and (4); ΔABE≅ΔDCF [By ASA congruency axioms]
∴ar(ΔABE)≅(ΔDCF)
∴ ar (||gm ABCD)=ar(ΔABE)+ar (trapezium EBCD)
=ar (ΔDCF)=ar (trapezium EBCD)
=ar (||gm EBCF)
Hence, ar (||gm ABCD)=ar (||gm EBCF)