wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Prove that the value of a3+b3+c33abc is unaltered if we substitute sa,sb,sc for a,b,c respectively, where 3s=2(a+b+c).

Open in App
Solution

Given that:
3s=2(a+b+c)
Now,
a3+b3+c33abc=12(a+b+c){(ab)2+(bc)2+(ca)2}
When we substitute, sa,sb,sc for a,b,c we get,
(sa+sb+sc)=3s(a+b+c)
or, 2(a+b+c)(a+b+c)=a+b+c
(sas+b)=ba
Similarly,
(sbs+c)=cb and (scs+a)=ac
Substituting sa,sb,sc for a,b,c we get,
=12(sa+sb+sc){(sas+b)2+(sbs+c)2+(scs+a)2}
=12(a+b+c){(ba)2+(cb)2+(ac)2}
=12(a+b+c){(ab)2+(bc)2+(ca)2}
Therefore, Value of the expression will not altered.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Identity (a - b)^3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon