Given that:
3s=2(a+b+c)
Now,
a3+b3+c3−3abc=12(a+b+c){(a−b)2+(b−c)2+(c−a)2}
When we substitute, s−a,s−b,s−c for a,b,c we get,
(s−a+s−b+s−c)=3s−(a+b+c)
or, 2(a+b+c)−(a+b+c)=a+b+c
(s−a−s+b)=b−a
Similarly,
(s−b−s+c)=c−b and (s−c−s+a)=a−c
Substituting s−a,s−b,s−c for a,b,c we get,
=12(s−a+s−b+s−c){(s−a−s+b)2+(s−b−s+c)2+(s−c−s+a)2}
=12(a+b+c){(b−a)2+(c−b)2+(a−c)2}
=12(a+b+c){(a−b)2+(b−c)2+(c−a)2}
Therefore, Value of the expression will not altered.