Consider the left hand side
L.H.S=tan−1(6x−8x31−12x2)−tan−1(4x1−4x2)
We know that tan−1A−tan−1B=tan−1(A−B1+AB)
L.H.S=tan−1⎛⎜
⎜
⎜
⎜⎝6x−8x31−12x2−4x1−4x21+(6x−8x31−12x2)(4x1−4x2)⎞⎟
⎟
⎟
⎟⎠
=tan−1⎛⎜
⎜
⎜
⎜
⎜⎝(6x−8x3)(1−4x2)−4x(1−12x2)(1−12x2)(1−4x2)(1−12x2)(1−4x2)+4x(6x−8x3)(1−12x2)(1−4x2)⎞⎟
⎟
⎟
⎟
⎟⎠
=tan−1((6x−8x3)(1−4x2)−4x(1−12x2)(1−12x2)(1−4x2)+4x(6x−8x3))
=tan−1(6x−24x3−8x3+32x5−4x+48x31−4x−12x2+48x4+24x2−32x4)
=tan−1(32x5+16x3+2x16x4+8x2+1)
=tan−1(2x(16x4+8x2+1)16x4+8x2+1)
=tan−12x
Thus, L.H.S=R.H.S