Let
f(x)=a0+a1x+a2x2+...+anxn, where
aiϵ integer (
i=0,1,2,...,n)
Now, f(a)=a0+a1a+a2a2+...+anan=b (i)
f(b)=a0+a1b+a2b2+...+anbn=c (ii)
f(c)=a0+a1c+a2c2+...+ancn=a (iii)
which gives f(a),f(b),f(c) ϵ integer
∴ f(a)−f(b)=(a−b)× A function in terms of a and b.
⇒b−c=(a−b)f1(a,b), where f1(a,b) is an integer.
Similarly, (b−c)f1(b,c)=c−a
and (c−a)f1(c,a)=a−b
Multiplying above expressions, we get
f1(a,b)f1(b,c)f1(c,a)=1
⇒ f1(a,b)=1, f1(b,c)=1, f1(c,a)=1 (as product of integers is 1, if each is one)
⇒ |a−b|=|b−c|=|c−a|
⇒ a−b=b−c or a−b=c−b
⇒ a=c which is not possible (as a, b, c are distinct)
Similarly, we get other cases.
Hence, no polynomial exist.