From the diagram
BC and AD is the median.
In △AXBandAXC By Pythagoras Theorem,
AB2=AX2+BX2−−(i)
And
AC2=AX2+CX2−−(ii)
Adding (i) and (ii) we get
AB2+AC2=2AX2+BX2+CX2
But, BX=BD−DX and CX=DX+DC
DX+BD since BD=DC
∴BX2+CX2=(BD−DX)2+(DX+BD)2
⇒BX2+CX2=(BD2+DX2−2BD×DX)+(DX2+BD2+2BD×DX)
⇒BX2+CX2=2BD2+2DX2
Now
AB2+AC2=2AX2+BX2+CX2
⇒AB2+AC2=2AX2+2BD2+2DX2
⇒AB2+AC2=2(AX2+DX2)+2BD2{∴AX2+DX2=AD2}
∴AB2+AC2=2AD2+2BD2
Now,
AB2+AC2=2AD2+BC22−−−−(iii)
Similarly
BC2+AB2=2BE2+AC22−−−−−(iv)
AC2+BC2=2CF2+AB22−−−−−(v)
Now adding (iii),(iv)and(v) we get
2(AB2+BC2+AC2)=2(AD2+BC2+CE2)+12(AB2+BC2+AC2)
On multiplying through 2 we get
4(AB2+BC2+AC2)=4(AD2+BC2+CE2)+(AB2+BC2+AC2)
⇒3(AB2+BC2+AC2)=4(AD2+BC2+CE2)
Proved.