REF.Image
AD is the median
In triangle AXB & AXC, by pythagoras theorem,
AB2=AX2+BX2 (1)
and AC2=AX2+CX2 (2)
Adding (1) & (2)
AB2+AC2=2AX2+BX2+CX2
but BX=BD−DX and CX=DX+DC=BD+DX
∴BX2+CX2=(BD−DX)2+(DX+BD)2
BX2+CX2=(BD2+DX2−2BD×DX)+(DX2+BD2−2BD×DX)
BX2+CX2=2BD2+2DX2
Now, AB2+AC2=2AX2+BX2+CX2
AB2+AC2=2AX2+2BD2+2DX2
AB2+AC2=2(AX2+DX2)+2BD2 ∵AX2+DX2=AD2
AB2+AC2=2AD2+2BD2
AB2+AC2=2AD2+BC22 (3)
similarly, BC2+AB2=2BE2+AC22 (4)
AC2+BC2=2CF2+AB22 (5)
Adding (3),(4) and (5)
2(AB2+BC2+AC2)=2(AD2+BE2+CF2)+12(AB2+BC2+AC2)
multiplying throughout by 2,
4(AB2+BC2+AC2)=4(AD2+BE2+CF2)+(AB2+BC2+AC2)
3(AB2+BC2+AC2)=4(AD2+BE2+CF2)
hence Proved.