wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of squares of the medians of that triangles .

Open in App
Solution

REF.Image

AD is the median

In triangle AXB & AXC, by pythagoras theorem,

AB2=AX2+BX2 (1)

and AC2=AX2+CX2 (2)

Adding (1) & (2)

AB2+AC2=2AX2+BX2+CX2

but BX=BDDX and CX=DX+DC=BD+DX

BX2+CX2=(BDDX)2+(DX+BD)2

BX2+CX2=(BD2+DX22BD×DX)+(DX2+BD22BD×DX)

BX2+CX2=2BD2+2DX2

Now, AB2+AC2=2AX2+BX2+CX2

AB2+AC2=2AX2+2BD2+2DX2

AB2+AC2=2(AX2+DX2)+2BD2 AX2+DX2=AD2

AB2+AC2=2AD2+2BD2

AB2+AC2=2AD2+BC22 (3)

similarly, BC2+AB2=2BE2+AC22 (4)

AC2+BC2=2CF2+AB22 (5)

Adding (3),(4) and (5)

2(AB2+BC2+AC2)=2(AD2+BE2+CF2)+12(AB2+BC2+AC2)

multiplying throughout by 2,

4(AB2+BC2+AC2)=4(AD2+BE2+CF2)+(AB2+BC2+AC2)

3(AB2+BC2+AC2)=4(AD2+BE2+CF2)

hence Proved.

1236812_1502495_ans_761c4807659043ca8700f8dfd1ff9383.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Any Point Equidistant from the End Points of a Segment Lies on the Perpendicular Bisector
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon