Let one pair be px2+2qxy+ry2=0.....(i)
Equation of angle bisector
x2−y2p−q=xyq=0x2−y2−p−qrxy=0......(ii)
Lines by (i) and (ii) is given by
ax4+bx3y+cx2y2+dxy3+ay4=0
ax4+bx3y+cx2y2+dxy3+ay4=(px2+2qxy+ry2)(x2−y2−p−rqxy)....(iii)
Comparing the coefficients of x4 andy4
⇒p=a,r=−a
Substituting in (iii)
ax4+bx3y+cx2y2+dxy3+ay4=(px2+2qxy+ry2)(x2−y2−2aqxy)
ax4+bx3y+cx2y2+dxy3+ay4=(ax4+−ax2y2−2a2qx3y+2qbx3y−2qxy3−4ax2y2−ax2y2+ay4+2a2qxy3=0ax4+bx3y+cx2y2+dxy3+ay4=(ax4+(2q−2a2q)x3y−6ax2y2+(2a2q−2q)xy3+ay4)
Comparing the coefficients we get
b=2q−2a2q......(iv)c=−6a............(v)d=2a2q−2q........(vi)
Adding (iv) and (vi)
⇒b+d=0
From (v)
c+6a=0
Hence proved