f(x)=x1+xtanx
For the value to be maximum
df(x)dx=0
So d(x1+x+tanx)dx=0
Applying quotient rule of difrentiation
(1+tanx)dxdx−xddx(1+xtanx)(1+xtanx)2=0or,(1+xtanx)−x[d1dx+d(xtanx)dx]=0
[Applying product rule of differentiation]
or,1+xtanx−x[xdtanxdx+tanxdxdx]=0or,1+xtanx−x2sec2x−xtanx=0or,1=x2sec2xor,1sec2x=x2,cos2x=x2cosx=±x
Hence proved