We have : x2 + y2 + z2 - xy - yz - zy
Now we multiply by in whole equation and get
2 ( x2 + y2 + z2 - xy - yz - zx )
⇒2 x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx
⇒ x2 + x2 + y2 + y2 + z2 + z2 - 2xy - 2yz - 2zx
⇒ x2 + y2 - 2xy + y2 + z2 - 2yz + z2 + x2 - 2zx
⇒ ( x - y )2 + ( y - z )2 + ( z - x )2
From above equation we can see that for distinct value of x , y and z given equation is always positive .