Consider the given equation.
y2=4a(x−a) …… (1)
Given differential equation is,
y[1−(dydx)2]=2xdydx …… (2)
Differentiate equation (1) with respect to x.
2ydydx=4a
dydx=2ay …… (3)
Now, substitute this value in the LHS of equation (2).
⇒y[1−(2ay)2]
⇒y2−4a2y
⇒4a(x+a)−4a2y
⇒4axy
⇒2×(dydx)×(x)
⇒2xdydx
⇒RHS
Hence, proved.