wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
y2x2dydx=xydydx

Open in App
Solution

y2x2dydx=xd(dydx)
y2xy(dydx)=dydx
y2(xy+1)dydx=0
Let yx=u
y=xu
dydx=x.dvdx+v
Now
u(1u+1)(xdudx+v)=0
u=(1u+1)(x.dudx+v)
v=xu.dudx+1+xdudx+u
vu(xu+x)dudx+1
x(1u+1)dudx=1
(1v+1)du=dxx
(1u+1)du=dxx
logu+v=logx+c
logu+logeu=logcx
logveu=cx
As u=yx
yxeyx=cx
yeyx=c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon