We have,
y=ae−2x+bex
On differentiating and we get,
dydx=−2ae−2x+bex
Again differentiating and we get,
d2ydx2=4ae−2x+bex
Now,
L.H.S.
d2ydx2+dydx−2y
⇒4ae−2x+bex−2ae−2x+bex−2(ae−2x+bex)
⇒4ae−2x+bex−2ae−2x+bex−2ae−2x−2bex
⇒4ae−2x−4ae−2x+2bex−2bex
⇒0
Hence, this is the
answer.