y=c−x1+cx
Differentiate w.r.t.x,
dydx=−1(1+cx)−c(c−x)(1+cx)2
dydx=−1−cx−c2+cx(1+cx)2
=−(1+c2)(1+cx)2 .......(2)
From (1),
y(1+cx)=c−x
⇒c=x+y1−xy
Substituting value of c in (2),
dydx=−[1+(x+y1−xy)2][1+(x+y)x1−xy]2
=1[(1−xy)2+x2+y2+2xy](1−xy+x2+xy)2
=−(1+x2y2+x2+y2)(1+x2)2
=−(1+x2)(1+y2)(1+x2)2
=−(1+y2)1+x2
⇒dydx(1+x2)=−(1+y2)
⇒(1+x2)dydx+(1+y2)=0