Given:
y=4sinθ(2+cosθ)−θ
Differentiating w.r.t. θ,
we get
dydθ=4cosθ(2+cosθ)−4sinθ(−sinθ)(2+cosθ)2−1
⇒dydθ=8cosθ+4cos2θ+4sin2θ(2+cosθ)2−1
⇒dydθ=8cosθ+4(2+cosθ)2−1
⇒dydθ=8cosθ+4−(2+cosθ)2(2+cosθ)2
⇒dydθ=8cosθ+4−(4+cos2θ+4cosθ)(2+cosθ)2
⇒dydθ=4cosθ−cos2θ(2+cosθ)2
⇒dydθ=cosθ(4−cosθ)(2+cosθ)2
For θ ϵ [0,π2]
cosθ(4−cosθ)(2+cosθ)2>0
⇒dydθ>0
so, given function is increasing in [0,π2]
Hence proved.