wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that y=4sinθ(2+cosθ)θ is an increasing function of θ in [0,π2]

Open in App
Solution

Given:

y=4sinθ(2+cosθ)θ

Differentiating w.r.t. θ,
we get

dydθ=4cosθ(2+cosθ)4sinθ(sinθ)(2+cosθ)21

dydθ=8cosθ+4cos2θ+4sin2θ(2+cosθ)21

dydθ=8cosθ+4(2+cosθ)21

dydθ=8cosθ+4(2+cosθ)2(2+cosθ)2

dydθ=8cosθ+4(4+cos2θ+4cosθ)(2+cosθ)2

dydθ=4cosθcos2θ(2+cosθ)2

dydθ=cosθ(4cosθ)(2+cosθ)2

For θ ϵ [0,π2]

cosθ(4cosθ)(2+cosθ)2>0

dydθ>0

so, given function is increasing in [0,π2]

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon