1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Implicit Differentiation
Prove that:zx...
Question
Prove that :
z
x
y
z
2
x
2
y
2
z
4
x
4
y
4
=
x
y
z
x
2
y
2
z
2
x
4
y
4
z
4
=
x
2
y
2
z
2
x
4
y
4
z
4
x
y
z
=
x
y
z
x
-
y
y
-
z
z
-
x
x
+
y
+
z
.
Open in App
Solution
Let
Δ
1
=
z
x
y
z
2
x
2
y
2
z
4
x
4
y
4
,
Δ
2
=
x
y
z
x
2
y
2
z
2
x
4
y
4
z
4
,
Δ
3
=
x
2
y
2
z
2
x
4
y
4
z
4
x
y
z
and
Δ
4
=
x
y
z
x
-
y
y
-
z
z
-
x
x
+
y
+
z
Now
,
Δ
1
=
z
x
y
z
2
x
2
y
2
z
4
x
4
y
4
Using
the
property
that
if
two
rows
(
or
columns
)
of
a
determinant
are
interchanged
,
the
value
of
the
determinant
becomes
negetive
,
we
get
⇒
Δ
1
=
-
1
x
z
y
x
2
z
2
y
2
x
4
z
4
y
4
∵
C
1
↔
C
2
=
-
1
-
1
x
y
z
x
2
y
2
z
2
x
4
y
4
z
4
∵
C
2
↔
C
3
=
x
y
z
x
2
y
2
z
2
x
4
y
4
z
4
=
Δ
2
.
.
.
(
1
)
=
-
1
x
2
y
2
z
2
x
y
z
x
4
y
4
z
4
Applying
R
1
↔
R
2
=
-
1
-
1
x
2
y
2
z
2
x
4
y
4
z
4
x
y
z
Applying
R
2
↔
R
3
=
x
2
y
2
z
2
x
4
y
4
z
4
x
y
z
=
Δ
3
.
.
.
(
2
)
Thus
,
Δ
1
=
Δ
2
=
Δ
3
From
eqs
.
(
1
)
and
(
2
)
∆
2
=
x
y
z
x
2
y
2
z
2
x
4
y
4
z
4
=
x
y
z
1
1
1
x
y
z
x
3
y
3
z
3
Taking
out
common
facto
r
x
from
C
1
,
y
from
C
2
and
z
from
C
3
=
xyz
0
0
1
x
-
y
y
-
z
z
x
3
-
y
3
y
3
-
z
3
z
3
Applying
C
→
C
1
-
C
2
and
C
2
→
C
2
-
C
3
=
xyz
x
-
y
y
-
z
0
0
1
1
1
z
x
2
+
2
x
y
+
y
2
y
2
+
2
y
z
+
z
2
z
3
∵
a
3
-
b
3
=
a
-
b
a
2
+
ab
+
b
2
Taking
out
common
factor
x
-
y
from
C
1
and
y
-
z
from
C
2
=
xyz
x
-
y
y
-
z
1
×
1
1
x
2
+
x
y
+
y
2
y
2
+
y
z
+
z
2
Expanding
along
R
1
=
xyz
x
-
y
y
-
z
y
2
+
y
z
+
z
2
-
x
2
-
x
y
-
y
2
=
xyz
x
-
y
y
-
z
y
z
-
x
y
+
z
2
-
x
2
=
xyz
x
-
y
y
-
z
y
z
-
x
+
z
-
x
z
+
x
=
xyz
x
-
y
y
-
z
z
-
x
y
+
x
+
z
=
xyz
x
-
y
y
-
z
z
-
x
x
+
y
+
z
=
∆
4
Thus
,
∆
1
=
∆
2
=
∆
3
=
∆
4
Suggest Corrections
0
Similar questions
Q.
Using properties of determinants, prove that
ω
∣
∣ ∣ ∣
∣
x
y
z
x
2
y
2
z
2
y
+
z
z
+
x
x
+
y
∣
∣ ∣ ∣
∣
=
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
(
x
+
y
+
z
)
Q.
∣
∣ ∣ ∣
∣
x
y
z
x
2
y
2
z
2
x
3
y
3
z
3
∣
∣ ∣ ∣
∣
=
x
y
z
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
Q.
Solve the following equations:
(
y
−
z
)
(
z
+
x
)
=
22
,
(
z
+
x
)
(
x
−
y
)
=
33
,
(
x
−
y
)
(
y
−
z
)
=
6
.
Q.
Prove that
(
x
+
y
)
(
y
+
z
)
(
z
+
x
)
≥
8
x
y
z
if
x
,
y
,
z
>
0
.
Q.
In the system of equations
(
x
+
y
)
(
y
+
z
)
=
35
,
(
y
+
z
)
(
z
+
x
)
=
56
and
(
z
+
x
)
(
x
+
y
)
=
40
, the values of
x
,
y
and
z
are:
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Implicit Differentiation
MATHEMATICS
Watch in App
Explore more
Implicit Differentiation
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app