Prove that sin (A + B + C) cos A sin B sin C + cos (A + B + C) sin A sin B sin C - sin (A + B + C) cos A cos B cos C - cos (A + B + C) sin A cos B cos C + sin (A + B) cos (B + C) cos (C + A) + cos (A + B) cos (B + C) sin (C + A) = 0
Open in App
Solution
Combine (1,3), (2,4), and (5,6), L.H.S.=−sin(A+B+C)cosAcos(B+C)−cos(A+B+C)sinAcos(b+C)+cos(B+C)sin(A+B+C+A). Take out cos(B+C) L.H.S. = cos(B+C)sin(A+B+C+A)−sin(A+B+C+A)=0