Prove the following,
2tan−1(12)+tan−1(17)=tan−1(3117)
Given 2tan−1(12)+tan−1(17)=tan−1(3117)
LHS = 2tan−1(12)+tan−1(17)=tan−1⎛⎝2×121−(12)2⎞⎠+tan−1(17)
(∵2tan−1x=tan−1(2x1−x2))
=tan−111−14+tan−117=tan−1(43)+tan−1(17)
=tan−1(43+171−43×17) (∵tan−1x+tan−1y=tan−1(x+y1−xy))
=tan−1(28+3211−421)=tan−1(31211721)=tan−1(3121×2117)=tan−1(3117)=RHS
Hence proved