wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following,

2tan1(12)+tan1(17)=tan1(3117)

Open in App
Solution

Given 2tan1(12)+tan1(17)=tan1(3117)
LHS = 2tan1(12)+tan1(17)=tan12×121(12)2+tan1(17)

(2tan1x=tan1(2x1x2))

=tan11114+tan117=tan1(43)+tan1(17)


=tan1(43+17143×17) (tan1x+tan1y=tan1(x+y1xy))


=tan1(28+3211421)=tan1(31211721)=tan1(3121×2117)=tan1(3117)=RHS
Hence proved


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon