Prove the following: (3+1)(3-cot30°)=tan360°-2sin60°
Step 1. Evaluate LHS of the given expression.
LHS=(3+1)(3-cot30°)=(3+1)3-3∵cot30°=3=33-3+3-3=23
Step 2. Evaluate RHS of the given expression.
RHS=tan360°-2sin60°=(3)3-2·32∵tan60°=3,sin60°=32=33-3=23
LHS=RHS
Hence, proved.
Prove that following identities:
tan θ tan (θ+60∘)+tan θ tan(θ−60∘)+tan(θ+60∘) tan(θ−60∘)=−3