Prove the following,
3cos−1x=cos−1(4x3−3x),xϵ[12,1].
Let x=cosθ LHS = 3cos−1x=3cos−1(cos θ)=3θ RHS = cos−1(4x3−3x)=cos−1[4cos3θ−3cosθ]=cos−1[cos3θ]=3θ [∵cos3θ=4cos3θ−3cosθ] ∴ LHS=RHS
Hence, proved