Let the given statement be P(n), i.e.,
P(n):1+2+3+.....+n<18(2n+1)2
P(n) is true for n=1 since 1<18(2.1)2=98
Let P(k) be true P(n) be true for some k∈N is true i.e.
P(k):1+2+3+.....+k<18(2k+1)2 ......(i)
Consider
(1+2+......k)+(k+1)<18(2k+1)2+(k+1) [Using (i)]
=18{(2k+1)2+8(k+1)}
=18(4k2+4k+1+8k+8)
=18(4k2+12k+9)
=18(2k+3)2
=18{2(k+1)+1}2
(1+2+3+.....k)+(k+1)<18(2k+1)2
Hence,
Thus, P(k+1) is true whenever P(k) is true.
Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers n