Step (1): Assume given statement
Let the given statement be P(n), i.e.,
P(n):1⋅3+2⋅32+3⋅33+⋯+n⋅3n=(2n−1)3n+1+34
Step (2): Checking statement P(n) for n=1
Put n=1 in P(n), we get
P(1):1.3=(2×1−1)31+1+34
⇒3=1⋅9+34=124=3
⇒3=3
Thus P(n) is true for n=1
Step (3): P(n) for n=K
Put n=K in P(n) and assume this is true for some natural number K i.e.,
P(K):1⋅3+2⋅32+3⋅33+⋯+K⋅3K
=(2K−1)3K+1+34 ⋯(1)
Step (4): Checking statement P(n) for n=K+1
Now we shall prove that P(K+1) is true whenever P(K) is true.
Now, we have
1⋅3+2⋅32+3⋅33+⋯+K⋅3K+(K+1)3K+1
=(2K−1)3K+1+34+(K+1)3K+1 (Using (1))
=(2K−1)3K+1+3+4(K+1)3K+14
=3K+1(2K−1+4K+4)+34
=3K+1(6K+3)+34
=3⋅3K+1(2K+1)+34
=(2K+1)3K+2+34
We can write it as,
=(2(K+1)−1)3((K+1)+1)+34
Thus, P(K+1) is true whenever P(K) is true.
Final Answer :
Hence, from the principle of mathematical induction, the statement P(n) is true for all n∈N.