Step (1): Assume given statement :
Let the given statement be P(n) i.e.,
P(n):12+32+52+⋯+(2n−1)2=n(2n−1)(2n+1)3
Step (2): Checking statement P(n) for n=1
Put n=1 in P(n), we get
P(1):12=1⋅(2⋅1−1)(2⋅1+1)3
⇒1=1⋅1⋅33
⇒1=1
Thus P(n) is true for n=1
Step (3): P(n) for n=K
Put n=Kin P(n) and assume this is true for some natural number K i.e.,
P(K):12+32+52+⋯+(2n−1)2=K(2K−1)(2K+1)3 ⋯(i)
Step (4): Checking statement P(n) for n=K+1
Now we shall prove that P(K+1) is true whenever P(K) is true.
Now, we have
12+32+52+⋯+(2K−1)2+(2K+1)2
={12+32+52+⋯+(2K−1)2)}+(2K+1)2
=K(2K−1)(2K+1)3+(2K+1)2 (using (1))
=(2K+1)[K(2K−1)3+(2K+1)]
=(2K+1)[2K2−K+6K+33]
=(2K+1)[2K2+5K+33]
=(2K+1)[2K2+3K+2K+33]
=(2K+1)[(2K+3)(K+1)3]
We can write it as
(K+1){2(K+1)−1}{2(K+1)+1}3
Thus, P(K+1) is true whenever P(K) is true
Final answer :
Therefore, by the principle of mathematical induction, statement P(n) is true for all n∈N.