Step (1): Assume given statement
Let the given statement be P(n), i.e.,
P(n):13+23+33+⋯+n3=(n(n+1)2)2
Step (2): Checking statement P(n) for n=1
Put n=1 in P(n), we get
P(1):13=(1(1+1)2)2
⇒1=(22)2
⇒1=1
Thus P(n) is true for n=1
Step (3): P(n) for n=K
Put n=K in P(n) and assume this is true for
some natural number K i. e.,
P(K):13+23+33+⋯+K3=(K(K+1)2)2 ⋯(1)
Step (4): Checking statement P(n) for n=K+1
Now we shall prove that P(K+1) is true
whenever P(K) is true.
Now, we have
13+23+33+⋯+K3+(K+1)3
=(13+23+33+⋯+K3)+(K+1)3
=(K(K+1)2)2+(K+1)3 (Using (1))
={K2(K+1)2+4(K+1)34}
=(K+1)2(K2+4(K+1))4
=(K+1)2(K2+4K+4)4
=(K+1)2(K+2)24
=((K+1)[(K+1)+1]2)2
Thus, P(K+1) is true, whenever P(K) is true.
Final Answer.
Hence, from the principle of Mathematical induction, the statement P(n) is true for all n∈N.