Step (1): Assume given statement
Let the given statement be P(n), i.e.,
P(n):1⋅3+3⋅5+5⋅7+⋯+(2n−1)(2n+1)
=n(4n2+6n−1)3
Step (2): Checking statement P(n) for n=1
Put n=1 in P(n), we get
P(1):1⋅3=1(4(1)2+6⋅1−1)3
⇒3=(4+6−1)3
⇒3=93
⇒3=3
Thus P(n) is true for n=1
Step (3): P(n) for n=K
Put n=K in P(n) and assume this is true for some natural number K i. e.,
P(K):1⋅3+3⋅5+5⋅7+⋯+(2K−1)(2K+1)
=K(4K2+6K−1)3 ⋯(1)
Step (4): Checking statement P(n) for n=K+1
Now we shall prove P(K+1) is true whenever P(K) is true.
Now, we have
1⋅3+3⋅5+5⋅7+⋯+(2K−1)(2K+1)+(2K+1)(2K+3)
=K(4K2+6K−1)3+(2K+1)(2K+3) (using (1))
=K(4K2+6K−1)3+(4K2+6K+2K+3)
=K(4K2+6K−1)+3(4K2+8K+3)3
=4K3+6K2−K+12K2+24K+93
So, we get
=4K3+18K2+23K+93
It can be written as
=4K3+14K2+9K+4K2+14K+93
=K(4K2+14K+9)+1(4K2+14K+9)3
=(4K2+14K+9)(K+1)3
=(K+1){4(K+1)2+6(K+1)−1}3
Thus, P(K+1) is true whenever P(K) is true
Final Answer :
Hence, from the principle of mathematical induction, the statement P(n) is true for all n∈N.