wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following by using the principle of mathematical induction for all nN:1.3+2.32+3.33+.....+n.3n=(2n1)3n+1+34

Open in App
Solution

Let the given statement be P(n) i.e.,
1.3+2.32+3.33+........n.3n=(2n1)3n+1+34
P(n):
For n=1, we have
P(1):1.3=3=(2.11)31+1+34=32+34=124=3........(i)
We shall now prove that P(k+1) is true.
Consider
1.3+2.32+3.33+.......k.3k+(k+1)3k+1=(1.3+2.32+3.33+.....+k.3k+(k+1)3k+1
=(2k1)3k+1+34+(k+1)3k+1 [Using (i)]
=(2k1)3k+1+3+4(k+1)3k+14=3k+1{2k1+4(k+1)}+34
=3(k+1)+1{2k+1}+34
={2(k+1)1}3(k+1)+1+34
Thus P(k+1) is true whenever P(k) is true.
Hence, by the principle of mathematical induction. statement P(n) is true for all natural numbers i.e., n.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon