Prove the following:
cos 6x = 32 cos6x−48 cos4x+18 cos2x−1
We have
L.H.S. = cos 6x = 2 cos2 3x-1
[cos 2θ=2 cos2 θ−1]
= 2[4 cos3 x−3 cosx]2−1
[∵cos 3θ=4 cos3 θ−3 cos θ]
= 2 [16 cos6x+9 cos2x−24 cos4x]−1
= 32 cos6x+18 cos2x−48 cos4x−1
= 32 cos6x−48 cos4x+18 cos2x−1
= R.H.S.