Prove the following:
cos(3π2+x)cos(2π+x)[cot(3π2+x)+cot(2π+x)]
= 1
We have
L.H.S. =
cos (3π2+x)cos(2π+x)[cot(3π2+x)+cot(2π+x)]
= sin x . cos x [tan x + cot x]
⎡⎢⎣∵cos (3π2+x)=sin x,cos (2π+x)=cos xcot(3π2−x)=tan x,cot (2π+x)=cot x⎤⎥⎦
= sin xcos x[sin xcos x+cos xsin x]
= sin x cos x[sin2 x+cos2 xsin x cos x]
= sin x cos x[1sin x cos x]
= 1 = R.H.S.