Prove the following:
cot x cot 2x - cot 2x cot 3x - cot 3x cot x = 1
We have cot 3x = cot (2x+x)
⇒(cot 2x cot x)-1cot 2x + cot x
∴ cot 3x (cot 2x+ cot x)= (cot 2x. cot x)-1
⇒ cot 3x . cot 2x+ cot 3x . cot x = (cot 2x . cot x) -1
⇒ cot 3x cot 2x + cot 3x cot x - cot 2x cot x + 1= 0
∴ cot x cot 2x - cot 2x cot 3x - cot 3x. cot x
= 1
Hence proved.