L.H.S.
cos(π+x)cos(−x)sin(π−x)cos(π2+x)
⇒−cosx(cosx)sinx(−sinx)∴cos(π+θ)=−cosθ,sin(π−θ)=sinθ
⇒cos2xsin2x
⇒cot2x
Prove the following:
= cos(π+x)cos(−x)sin(π−x)cos(π2+2)=cot2 x
[cos(π+x) cos(-x)] divided by / sin(π-x) cos(π/2 + x) = cot^2x