wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following:
sin 2θ1cos2θ=cotθ or 1cos2θ1+cos 2θ=tan2θ2

Open in App
Solution

Solution:-
  • sin2θ1cos2θ=cotθ
L.H.S.-
sin2θ1cos2θ
Using identity:-
cos2θ=12sin2θ1cos2θ=2sin2θ
sin2θ=2sinθcosθ
sin2θ1cos2θ=2sinθcosθ2sin2θ
=cosθsinθ
=cotθ(cotθ=cosθsinθ)
=R.H.S.
Hence proved.
  • 1cos2θ1+cos2θ=tanθ2
L.H.S.-
    1cos2θ1+cos2θ
      Using identity:-
        cos2θ=2cos2θ11+cos2θ=2cos2θ
          sin2θ+cos2θ=11cos2θ=sin2θ
            1cos2θ1+cos2θ=sin2θ2cos2θ
              =12(sin2θcos2θ)
                =12tan2θ(tanθ=sinθcosθ)

                flag
                Suggest Corrections
                thumbs-up
                0
                Join BYJU'S Learning Program
                similar_icon
                Related Videos
                thumbnail
                lock
                Solving QE using Quadratic Formula
                MATHEMATICS
                Watch in App
                Join BYJU'S Learning Program
                CrossIcon