Prove the following:
sin x - sin 3xcos x + cos 3x=tan 2x
We have
L.H.S. = sin x+sin 3xcos x+cos 3x
= 2 sin(x+3x2)cos(x−3x2)2 cos(x+3x2)cos(x−3x2)
⎡⎢⎣∵sin C+sin D=2 sin(C+D2)cos(C−D2)cos C+ cos D = 2 cos(C+D2)cos(C−D2)⎤⎥⎦
= 2 sin 2x cos (-x)2 cos 2x cos(-x)
= tan 2x = R.H.S.