Prove the following:
sin x - sin 3xsin2x−cos2x=2sin x.
We have
L.H.S. = sin x - sin 3xsin2x−cos2x
= −(sin 3x - sin x)−(cos2x−sin2x)
= 2 cos(3x+x2)sin(3x−x2)cos 2x
⎡⎣∵sin C -sin D = 2 cos(C+D2)sin(C−D2)cos 2A = cos2A−sin2A⎤⎦
= 2 cos 2x sin xcos 2x = 2 sin x
= R.H.S.