Prove the following:
tan(π4+x)tan(π4−x) = [1+tan x1−tan x]2
We have
L.H.S. = tan(π4+x)tan(π4−x)
tanπ4+tan x1−tanπ4tan xtanπ4−tan x1+tanπ4tan x
⎡⎢⎣∵tan(A+B)=tan A+tan B1−tan Atan B∵tan(A−B)=tan A−tan B1−tan Atan B⎤⎥⎦
1+tan x1−tan x1−tan x1+tan x=(1+tan x)2(1−tan x)2
=[1+tan x1−tan x]2 = R.H.S