Differentiation of Inverse Trigonometric Functions
Prove the fol...
Question
Prove the following. i) If y=axax...∞, then prove that dydx=y2logyx(1−ylogxlogy) ii) If y=cosxcosxcosxcosx...∞, then prove that dydx=−y2tanx1−ylogcosx
Open in App
Solution
i) The given series maybe written as y=axy ⇒logy=xyloga log(logy)=ylogx+log(loga) 1logyddxlogy=dydxlogx+yddxlogx+0 1logy1ydydx=dydxlogx+y1x dydx(1ylogy−logx)=yx dydx(1−ylogylogxylogy)=yx dydx=y2logyx(1−ylogylogx)
ii) The given series maybe written as y=cosxy logy=ylogcosx 1ydydx=y1cosx(−sinx)+logcosxdydx 1ydydx=−ytanx+logcosxdydx (1y−logcosx)dydx=−ytanx (1−ylogcosxy)dydx=−ytanx dydx=−y2tanx1−ylogcosx