wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following.
i) If y=axax..., then prove that dydx=y2logyx(1ylogxlogy)
ii) If y=cosxcosxcosxcosx..., then prove that dydx=y2tanx1ylogcosx

Open in App
Solution

i) The given series maybe written as y=axy
logy=xyloga
log(logy)=ylogx+log(loga)
1logyddxlogy=dydxlogx+yddxlogx+0
1logy1ydydx=dydxlogx+y1x
dydx(1ylogylogx)=yx
dydx(1ylogylogxylogy)=yx
dydx=y2logyx(1ylogylogx)

ii) The given series maybe written as y=cosxy
logy=ylogcosx
1ydydx=y1cosx(sinx)+logcosxdydx
1ydydx=ytanx+logcosxdydx
(1ylogcosx)dydx=ytanx
(1ylogcosxy)dydx=ytanx
dydx=y2tanx1ylogcosx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon