wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following identities
2(sin6θ+cos6θ)3(sin4θ+cos4θ)+1=0

Open in App
Solution

2(sinθ+cosθ)3(sinθ+cosθ)+1=0

LHS=2(sinθ+cosθ)3(sinθ+cosθ)+1

=2[(sin²θ)³+(cos²θ)³]3sinθ3cosθ+1

=2(sin²θ+cos²θ)[(sin²θ)²+(cos²θ)²sin²θcos²θ)]3sinθ3cosθ+1.....As[a³+b³=(a+b)(a²+b²ab]

=2(1)[sinθ+cosθsin²θcos²θ]3sinθ3cosθ+1 ...........As[sin²θ+cos²θ=1]

=2sinθ+2cosθ2sin²θcos²θ3sinθ3cosθ+1

=2sinθ3sinθ+2cosθ3cosθ2sin²θcos²θ+1

=sinθcosθ2sin²θcos²θ+1

=1[sinθ+cosθ+2sin²θ(cos²θ)]

=1[(sin²θ)²+(cos²θ)²+2sin²θcos²θ]

=1(sin²θ+cos²θ)²..............As[a²+b²+2ab=(a+b)²]

=1(1)²

LHS=11=0

LHS=RHS

2(sinθ+cosθ)3(sinθ+cosθ)+1=0


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon