2(sin⁶θ+cos⁶θ)−3(sin⁴θ+cos⁴θ)+1=0
LHS=2(sin⁶θ+cos⁶θ)−3(sin⁴θ+cos⁴θ)+1
=2[(sin²θ)³+(cos²θ)³]−3sin⁴θ−3cos⁴θ+1
=2(sin²θ+cos²θ)[(sin²θ)²+(cos²θ)²−sin²θcos²θ)]−3sin⁴θ−3cos⁴θ+1.....As[a³+b³=(a+b)(a²+b²−a−b]
=2(1)[sin⁴θ+cos⁴θ−sin²θcos²θ]−3sin⁴θ−3cos⁴θ+1 ...........As[sin²θ+cos²θ=1]
=2sin⁴θ+2cos⁴θ−2sin²θcos²θ−3sin⁴θ−3cos⁴θ+1
=2sin⁴θ−3sin⁴θ+2cos⁴θ−3cos⁴θ−2sin²θcos²θ+1
=−sin⁴θ−cos⁴θ−2sin²θcos²θ+1
=1−[sin⁴θ+cos⁴θ+2sin²θ(cos²θ)]
=1−[(sin²θ)²+(cos²θ)²+2sin²θcos²θ]
=1−(sin²θ+cos²θ)²..............As[a²+b²+2ab=(a+b)²]
=1−(1)²
LHS=1−1=0
LHS=RHS
2(sin⁶θ+cos⁶θ)−3(sin⁴θ+cos⁴θ)+1=0