wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following identities:
abc(a)3(bc)3=abca3b3c2=(a2bc)(b2ca)(c2ab).

Open in App
Solution

Let I1=abc(a)3(bc)3

I2=abca3b3c3

I3=(a2bc)(b2ca)(c2ab)

Therefore,

I1=abc(a)3(bc)3

=abc(a+b+c)3(ab+bc+ca)3

=abc(a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3c2a+3ca2+6abc)
((ab)3+(bc)3+(ca)3+3a3b2c+3a3bc2+3ab3c2+3ab2c3+3a2b3c+3a2bc3+3a2b2c2)


=abc(a3+b3+c3)((ab)3+(bc)3+(ca)3)+3abc(b2c+bc2+a2b+ab2+ac2+a2c+2abc)
3abc(b2c+bc2+a2b+ab2+ac2+a2c+2abc)

=abc(a3+b3+c3)((ab)3+(bc)3+(ca)3)

=I2

=a4bc+ab4c+abc4a3b3b3c3c3a3

=a4bcb3c3a3b3+ab4c+abc4c3

=bc(a4b2c2)ab3(a2bc)ac3(a2bc)

=(a2bc)(bc(a2+bc)ab3ac3)

=(a2bc)(b2ac)(c2ab)

=I3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Finding Perfect Squares CV
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon