wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following identities.
2(sin6α+cos6α)3(sin4α+cos4α)+1=0

Open in App
Solution

sin6α+cos6α

=(sin2α)3+(cos2α)3

=(sin2α+cos2α)(sin4α+cos4αsin2αcos2α)

=(sin4α+cos4αsin2αcos2α)

Now-

2(sin6α+cos6α)3(sin4α+cos4α)+1

=2(sin4α+cos4αsin2αcos2α)3(sin4α+cos4α)+1

=12sin2αcos2α(sin4α+cos4α)

=12sin2αcos2α{(sin2α+cos2α)22sin2αcos2α}

=12sin2αcos2α{12sin2αcos2α}

=0


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon